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We present a numerical model of the hydrodynamic interactions between two capsules
freely suspended in a simple shear flow. The capsules are identical and each consists
of a liquid droplet enclosed by a thin hyperelastic membrane, devoid of bending
resistance and obeying a neo-Hookean constitutive law. The two capsules are slightly
prestressed with a given inflation ratio in order to avoid the small deformation
instability due to compression observed for a single capsule in simple shear flow.
The viscosity ratio between the interior and exterior fluids of the capsule is taken
to be unity and creeping flow conditions are assumed to prevail. The boundary-
element method is used with bi-cubic B-splines as basis functions on a structured
mesh in order to discretize the capsule surface. A new method using two grids with
initially orthogonal pole axes is developed to eliminate polar singularities in the load
calculation and to allow for long computation times. Two capsules suspended in simple
shear flow usually have different velocities and thus eventually pass each other. We
study this crossing process as a function of flow strength and initial particle separation.
We find that hydrodynamic interactions during crossing lead to large shape alterations,
elevated elastic tensions in the membrane and result in an irreversible trajectory shift
of the capsules. Furthermore, a tendency towards buckling is observed, particularly
during the separation phase where large pressure differences occur. Our results are
in qualitative agreement with those obtained for a pair of interacting liquid droplets
but show the specific role played by the membrane of capsules.

1. Introduction
Artificial capsules consisting of a liquid droplet enclosed by a thin elastic membrane

are widely used in many industrial processes (cosmetics, pharmaceuticals, food
industry). The role of the membrane is to protect the internal contents, to deliver
them through capsule breakup under specific conditions, or to control mass transfer
between the internal and external media. We consider here initially spherical liquid-
filled capsules designed to be used in suspension in another liquid. As compared to a
simple liquid droplet, the capsule has a more complex dynamic behaviour owing to
the presence of the membrane that may buckle under compression or burst when the
elastic tensions exceed a critical level.

There have been several numerical, experimental and theoretical studies of the
deformation of a single capsule suspended in a flow. For example, the deformation
of an isolated capsule freely suspended in a simple shear flow has been measured by
Chang & Olbricht (1993) and by Walter, Rehage & Leonhard (2000, 2001) for different
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membranes types. They find that after a short transient time, the capsule assumes a
steady deformed profile oriented with respect to the far flow-field direction and that
the membrane continuously rotates around this steady shape (tank-treading motion).
However, in some cases, the membrane is found to fold at low shear rates (Walter
et al. 2001). The motion of a capsule in shear flow has been modelled numerically with
the boundary-integral method by Pozrikidis (1995) and by Ramanujan & Pozrikidis
(1998) using a structured or an unstructured mesh, respectively. The orientation and
deformation of the capsule can then be predicted as a function of flow strength and
the rotational motion of the membrane is also recovered. Lac et al. (2004), using a
structured mesh and a bi-cubic spline interpolation of the interface, have shown that
stable equilibrium deformed shapes existed only between two limiting values of shear
rate. For weak flows, the capsule buckles as observed experimentally; for high shear
rates, the capsule exhibits high curvature tips and no equilibrium can be found.

In conclusion, if there are a number of results describing the motion of a single
capsule in Stokes flow, such is not the case when there are two or more capsules
interacting. Breyiannis & Pozrikidis (2001) modelled a two-dimensional suspension
of capsules in simple shear flow for two surface fractions. They thus obtained a
constitutive law for the two-dimensional suspension. However, the studies of a single
capsule in shear flow all show that three-dimensional effects play an important role
in determining the deformation and the tension distribution in the membrane. In
particular, they are the cause of membrane buckling in certain conditions (Lac et al.
2004). Modelling a suspension of three-dimensional capsules is of course a difficult
problem requiring large computer resources. As a first step, we tackle here the
simpler situation where only two identical capsules interact in simple shear flow. The
somewhat similar case of two interacting liquid droplets in simple shear flow has
been modelled for low Reynolds and Weber numbers (thus excluding coalescence)
by Loewenberg & Hinch (1997) and by Charles & Pozrikidis (1998), respectively, in
three and two dimensions. They find that after the drops have crossed, there is an
irreversible shift of their respective trajectories that depends on flow strength and on
the viscosity ratio. An experimental study of the collisions of two droplets by Guido
& Simeone (1998) has confirmed the results of the numerical model. Our objective is
thus to investigate the role of the elastic membrane on this phenomenon. The capsule
membrane obeys the neo-Hookean law and has no bending resistance. We find that
in this case, the membranes may develop a buckling instability. In order to alleviate
this problem, the capsules are first slightly prestressed by inflation, and the effect of
such preinflation on the overall behaviour of the particles is discussed.

The main problem assumptions and equations are given in § 2. In § 3, we show
how the numerical method developed by Lac et al. (2004) can be adapted to the
problem of two identical capsules freely suspended in a simple shear flow. We will
herein consider the case of two capsules with centres of mass located in the same
shear plane, for this position corresponds to the strongest pairwise interaction. In
this configuration, we investigate in § 4 the tensions exerted on the membranes and
the centre trajectories for different capillary numbers and initial positions. In § 5, we
discuss the relevance of the results, and necessary future work.

2. Problem statement
2.1. Boundary integral formulation

We consider two identical spherical capsules C1 and C2 with radius a, filled with a
Newtonian fluid of viscosity µ and density ρ, and enclosed by a very thin hyperelastic
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Figure 1. Representation of the relative position of the capsules in the shear plane (x1, x2).

membrane. The membrane is assumed to be a two-dimensional medium devoid of
bending resistance and characterized by a surface shear modulus Gs and an area
dilation modulus Ks . The two capsules are freely suspended in another Newtonian
liquid with the same viscosity µ and density ρ and subjected to a simple shear flow
with shear rate γ̇ in the (x1, x2)-plane. The Reynolds number ργ̇ a2/µ is assumed to
be very small so that the motion of the internal and external fluids is governed by the
Stokes equations. Assuming the same viscosity for the internal and external liquids
allows us to simplify the fluid mechanics equations and thus facilitates the numerical
procedure. This assumption is not too limiting, since it corresponds to a case where
there is strong coupling between the internal and external flows.

Denoting the centres of mass of the capsules G1 and G2, we use a reference frame
centred on the middle O of G1G2 and moving with it (figure 1). In this reference
frame, the undisturbed flow u∞ of the external liquid is given by

u∞
1 (x) = γ̇ x2, u∞

2 (x) = u∞
3 (x) = 0. (2.1)

The position of C1 with respect to C2 is given by the vector �x:

�x = x(G1) − x(G2) = 2 x(G1). (2.2)

The capsule centres G1 and G2 are initially located at position ±�x0/2. In the
present study, �x0

1 and �x0
2 always have opposite signs, so that the capsules are

naturally convected toward each other by the flow; by convention, we set �x0
1 to a

negative value.
The fluid velocity at any point x can be expressed in terms of boundary integrals

on the surfaces S1 and S2 of the two capsules (Pozrikidis 1992). When the internal and
external fluid viscosities are equal, the integral equation takes the following simplified
form with no contribution from the double-layer potential:

u(x) = u∞(x) − 1

8πµ

∮
S1∪S2

J(x, y) · � f ( y) dS( y), (2.3)

where � f represents the jump in viscous traction across the interfaces and J is the
free space Green’s function given in Cartesian coordinates by

Jij (x, y) =
δij

r
+

ri rj

r3
, (2.4)

with r = y − x and r = ‖r‖.
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Since the capsules are identical, their deformed shapes exhibit central symmetry
with respect to O. Consequently, on two symmetric points y and − y taken on the
surface of C1 and of C2, respectively, the load is � f ( y) and � f (− y) = − � f ( y),
respectively (figure 1). The integral equation (2.3) can thus be taken over only one
capsule:

u(x) = u∞(x) − 1

8πµ

∮
S1

[J(x, y) − J(x, − y)] · � f ( y) dS( y). (2.5)

2.2. Membrane mechanics

A detailed presentation of the mechanics of thin membranes may be found in a
number of references (e.g. Barthès-Biesel & Rallison 1981; Pozrikidis 1995; Barthès-
Biesel, Diaz & Dhenin 2002; Pozrikidis 2003, chap. 1 and 2) and is outlined only
briefly here. Owing to its thinness, the membrane is treated as a two-dimensional
hyperelastic surface with no bending resistance. The elastic stresses reduce to tensions
T (forces per unit length of deformed surface lines) in the membrane plane.

The membrane equilibrium condition relates the load due to the jump of viscous
traction across the interface to the membrane tension tensor T

∇s · T+ � f = 0, (2.6)

where ∇s represents the surface gradient operator. A membrane material point at
position X in the reference state is convected to position x at time t . A surface
displacement gradient A is defined as

A = (I − nn) · ∂x
∂ X

· (I − N N), (2.7)

where N and n denote the normal vectors to the membrane in the reference and in the
deformed state, respectively, and I is the identity tensor. The surface Green-Lagrange
deformation tensor is then given by

e = 1
2
(AT · A − (I − N N)). (2.8)

We assume that the membrane material is isotropic in its plane, so that locally, the
principal directions of strain and tension in the membrane plane are collinear. For
simplicity, we denote those principal directions 1 and 2, keeping in mind that they
should not be confused with the directions of flow. The deformation invariants are
then defined by

I1 = 2 tr e= λ1
2 + λ2

2 − 2, I2 = J 2
s − 1, (2.9)

where λ1 and λ2 are the principal extension ratios in the membrane plane, and
Js = λ1λ2 the local surface area dilation. In order to close the problem, it is necessary
to write a relation between the tension and the deformation of the membrane. In the
case of a hyperelastic isotropic membrane, we may introduce a strain energy function
W per unit of underformed membrane area, which is a function of the invariants,
such that:

T =
2

Js

∂W

∂I1

AT · A + 2Js

∂W

∂I2

(I − nn). (2.10)

We assume here that each membrane consists in a thin sheet of a three-dimensional
incompressible neo-Hookean material. In the limit of an infinitely thin membrane,
the two-dimensional neo-Hookean law (see Barthès-Biesel et al. 2002) is given by

W =
Gs

2

(
I1 + 2 +

1

I2 + 1

)
. (2.11)
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The principal tensions T1 and T2 in the membrane plane are then

T1 =
Gs

λ1λ2

(
λ2

1 − 1

λ2
1λ

2
2

)
, (2.12)

with a similar expression for T2, where the roles of indices 1 and 2 are exchanged.
The surface Poisson ratio of such a membrane is νs = 1/2, corresponding to an
area dilation modulus Ks = 3Gs . (Ks = (1 + νs)/(1 − νs) Gs; an area incompressible
membrane thus corresponds to νs = 1.)

Finally, the no slip condition between the fluid and the membrane leads to the
kinematic condition where for any point x on the interface, the fluid velocity is equal
to the membrane velocity:

u (x) =
∂x
∂t

(X, t). (2.13)

The overall deformation of the capsule is difficult to quantify. For a single capsule
with a nearly ellipsoidal shape, the deformation is often measured by the Taylor
parameter D12 = (L1 − L2)/(L1 + L2) where L1 and L2 represent the length and
breadth of the deformed profile in the shear plane. Here, since the capsules exhibit
complex shapes, we chose to evaluate their deformation through the relative change of
the surface area �A/As = A/As − 1, where As = 4πa2 is the initial membrane surface
area and A the deformed area.

An important parameter is the elastic capillary number,

ε =
µaγ̇

Gs

, (2.14)

which measures the relative importance of the viscous stress exerted by the fluids
compared to the elastic resistance of the membranes. This parameter may also be
viewed as a non-dimensional measurement of shear rate for a given pair of capsules.

2.3. Membrane buckling

Neglecting bending resistance implies that the membrane must be under tension
to be stable. Buckling instabilities appear when one of the two principal tensions
becomes negative. As discussed by Lac et al. (2004), the post-buckling behaviour of
the capsules cannot be captured since our membrane model does not account for
bending resistance. However, the onset of buckling can be detected by the apparition
of compressive stress followed by oscillations of different quantities (normal load,
curvature, etc.) on the surface.

Lac et al. (2004) have studied the deformation of an isolated capsule suspended in
simple shear flow and found that there were always compressive principal tensions
in the membrane for small enough shear rates, such that ε < εL. As the shear rate
increases, the membrane deformation and subsequent area dilation also increase and
the tensions in the membrane become all positive. The capsule deformation is then
stable. However, for large shear rates such that ε > εH , no equilibrium state seems to
exist and the capsule is assumed to burst owing to continuous elongation. The values
of εL and εH depend on the membrane constitutive law.

A way to eliminate the low shear buckling instability without introducing bending
resistance is to prestress the capsule by means of an internal pressure that could be
due, for example, to osmotic pressure if the membrane is semi-permeable (Sherwood
et al. 2003). As shown by Lac & Barthès-Biesel (2005), this creates an initial isotropic
tension T0 that depends on the initial inflation ratio α = a/a0 − 1, where a and a0

denote the radius of the capsule after and before inflation, respectively. In particular,
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for a neo-Hookean membrane, T0 is obtained from (2.12) with λ1 = λ2 = 1 + α. Thus,
in the limit of small inflation, T0 = 6α Gs . Lac & Barthès-Biesel (2005) also showed
that for a preinflated capsule, there was still a maximum shear rate εH above which
no equilibrium could be found. The only effect of prestressing is to increase slightly
the value of εH .

In equation (2.14) as well as in the rest of the paper, the chosen reference length is
the inflated capsule radius a, rather than the unstressed capsule radius a0. Indeed, the
inflated radius a is the proper length scale of the flow problem. Besides, it is easier to
measure than a0.

3. Numerical method
Using the boundary-element method and Lagrangian interface tracking, Lac et al.

(2004) developed a numerical model of the motion and deformation of an isolated
capsule in shear flow. We have adapted this model to the present problem of two
capsules.

The two undeformed, but eventually pre-inflated, capsules are placed in the
suspending liquid with their centres G1 and G2 at initial positions ±�x0/2,
respectively. At time t = 0, we start the simple shear flow (2.1) and follow the capsule
motion and deformation in time. At any given time t , we thus know the displacement
of the membrane material points and can then compute the displacement gradient A,
the deformation tensor e and the elastic tensions T in the membrane from equations
(2.7) to (2.11). The load � f on the membrane follows from (2.6). The integral
equation (2.5) yields the new velocity of the capsule membrane points. The position
of the membrane at time t + �t is then updated by means of an explicit fourth-
order Runge–Kutta integration of the kinematic equation (2.13) and the process is
repeated. Since we use an explicit time scheme, the time step �t must be very small
to ensure numerical stability. The procedure is stopped manually when the capsules
have crossed over and when the x2-coordinate of the centres of mass has become
constant in time.

Following Lac et al. (2004), the position of any point x on the interface is determined
by two independent curvilinear coordinates θ1 and θ2 which initially correspond to
the azimuthal and meridional angles in spherical coordinates. The initial surface is
then tessellated with n × m elements, corresponding to n and m equal intervals in the
θ1 and θ2 directions, respectively. The intersection of parallel curve i and meridian
curve j defines the grid node xij . Since the surface is holomorphic to a sphere, the
mesh contains two poles at θ1 = 0, π.

The use of a structured mesh allows us to interpolate the surface by means of
bi-cubic B-splines:

x(θ1, θ2, t) =
∑
k,l

x̃kl(t) Bn
k (θ1) Bm

l (θ2), (3.1)

where Bn
k and Bm

l are basis piecewise cubic polynomials, and x̃kl are the spline
coefficients associated to x at time t . For each scalar variable (e.g. each component of
x), a total of (n+ 3) × (m + 3) spline coefficients are required. This procedure ensures
continuity up to second order of the metric properties of the capsule surface. The
integral in (2.5) is calculated with the Gauss quadrature technique. Owing to the
definition of the kernel J, the velocity computed in (2.5) is divergence-free for any
surface force distribution � f . A way to measure the accuracy of the integration
procedure combined with the spline representation of the surface is thus to check the
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(a) (b)

Figure 2. The two-grid method: the surfaces in solid lines show the actual Lagrangian grid
(a) at t = 0 and (b) at time t . The dotted line surfaces show the secondary grid, initially created
from a π/2 rotation of the pole axis, and deduced from the deformed shape at time t .

volume conservation of the capsule during deformation. In all our simulations, the
maximum relative volume change ever observed was typically 10−4 for 20 × 40 grids
and 10−6 for 30 × 60 grids.

The dominant error of the numerical scheme comes from the determination of � f ,
because equation (2.6) is singular at the two grid poles. In the case of an isolated
capsule in shear flow, the pole value of the load may be extrapolated (Lac et al.
2004; Lac & Barthès-Biesel 2005). Since the steady capsule deformation is obtained
rapidly after a limited number of iterations, the extrapolation procedure does not
create a large error. Indeed, the method has been validated by comparison with other
numerical results obtained with an unstructured mesh (e.g. Ramanujan & Pozrikidis
1998). However, the crossing of two capsules is a transient process that requires
long computation times. Then, if the pole value of the load is extrapolated, the
accumulated error in the vicinity of these points may become large and eventually
cause the numerical scheme to diverge after long computation times.

We have thus developed a new method to calculate the load on the surface with
high accuracy. The idea is to describe the capsule surface with two grids where the
pole axes are initially orthogonal (figure 2a). Grid 1 corresponds to the one described
above. Grid 2 corresponds to a similar n × m partition of the initial surface, but with
poles located on points θ1 = π/2; θ2 = 0, π of grid 1. Each node of the secondary
grid has associated coordinates (θ1, θ2) on the primary grid. At each time step, we
use these coordinates in (3.1) to determine the position of the nodes of grid 2 on the
deformed surface (figure 2b), and then repeat the load computation (2.6) on grid 2.
This procedure gives us two load distributions � f (1) and � f (2), corresponding to
grids 1 and 2 where the respective poles have been excluded. We then calculate the
final load as

� f = ω � f (1) + (1 − ω) � f (2), (3.2)

where ω(θ1, θ2) is a weight function going to zero at the poles of grid 1 and to unity
at the poles of grid 2. Since the singularity in equation (2.6) behaves as sin−2 θ1 in the
vicinity of θ1 = 0, π when the capsule is spherical, we have chosen ω = sin2 θ1.

As a validation of this method, we have compared the results obtained with one
and two grids for a single capsule in simple shear flow. Figure 3 shows the Taylor
deformation in the shear plane D12 vs. time for ε = 0.0375 and different prestress
levels. These parameters correspond to difficult cases because the capillary number
is very small, and the numerical scheme is extremely sensitive to accumulated errors.
The gain of stability provided by the present method is obvious; after steady state has
been reached, the single-grid method exhibits some slow oscillations (which eventually
lead to numerical instability after long times), whereas the two-grid method reaches
a very stable plateau.
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Figure 3. Deformation of a single capsule in simple shear flow in time for ε = 0.0375 and
different values of α; comparison between the single-grid method (dotted lines) and the
two-grid method (solid lines).

In the result presented hereinafter, most of the simulations were performed with
a 20 × 40 grid. When the capsule shape exhibited high curvatures or when extra-
precision was required, the mesh was refined to a 30 × 60 grid. Grids with 10 × 20
and 40 × 80 elements were also used, but for convergence tests only.

4. Interaction of two capsules in the same shear plane
In order to assess the relative importance of hydrodynamic interaction effects,

it is of interest to compare the relevant quantities found for two capsules to those
obtained for a single capsule in shear flow without (Lac et al. 2004) or with preinflation
(Lac & Barthès-Biesel 2005). These quantities will be denoted by the superscript (sc).

At the start of flow, the capsules are undeformed and their centres G1 and
G2 are initially placed in the same shear plane (i.e. �x0

3 = 0) and separated by
(�x0

1 , �x0
2 ) = (−8a, 0.5a), except in § 4.5 where the effect of initial separation is

specifically studied. Although the capsules are free to move in space, we find that
|�x3(t)/a| remains smaller than 10−12 typically, which demonstrates the stability of
this configuration.

4.1. Effect of prestress

We consider the case ε =0.45, a value for which a single capsule reaches a steady
deformation even when the membrane is initially unstressed (α = 0), and study the
effect of preinflation ratios α = 0, 2.5, 5, 10%. Since �x0

2 > 0, the capsules are naturally
convected towards each other by the flow. Figure 4(a) shows the evolution of the
relative area dilation of each capsule �A/As as a function of position �x1/2a of
the centre of mass G1 for different values of α. Note that since the length scale is the
inflated capsule radius, the initial value of �A/As is zero for all preinflation ratios.
For comparison purpose, the steady area increase for a single capsule �A(sc)/As is
also shown in the figure (dotted lines). When the capsules overpass (�x1 ≈ 0), �A/As

reaches a maximum value significantly higher than that observed for a single particle
at the same inflation. The relative area dilation increase goes from 40% when α = 0
to 70% when α = 10%. Once they have passed each other (�x1 > 0), the capsules



Hydrodynamic interaction between two identical capsules in simple shear flow 157

0

0.5

–4 –2 0 2 4 6 8

–4 –2 0 2 4 6 8

0

0.1

0.2

(a)

(b)

∆A
As

α = 0

2.5%
5%

10%

∆x1/2a

∆x2

2a

Figure 4. (a) Relative area dilation as a function of the centre position x1(G1) = �x1/2a.
Dotted lines show the steady value for a single capsule. (b) Trajectory of centre G1 for
α = 0, 2.5%, 5%, 10% (ε = 0.45, �x1/2a0 = − 4, �x0

2/2a = 0.25). The horizontal axis is the
same for (a) and (b).

undergo a visco-elastic relaxation due to coupling between membrane elasticity and
fluid viscosity and they finally reach a steady state for �x1/2a > 3.5, approximately.
Since the steady deformation is the same as that observed for a single capsule, this
means that the capsules do not interact any more. As already observed for a single
capsule, one effect of prestress is to decrease capsule deformation or equivalently,
area dilation �A. However, it was not possible to follow the complete crossing of the
capsules for α = 0% and α =2.5% owing to the appearance of compressive stresses
in the membranes during the relaxation phase after the capsules have passed each
other. This point will be addressed in detail in § 4.4.

The trajectory of the centre G1 of capsule 1 is shown in figure 4(b) for different
values of α. We observe an irreversible trajectory shift across streamlines since capsule
separation �x2 at steady state is greater than the initial value �x0

2 . We also note that
the effect of the membrane prestress on the capsule centre trajectories is rather weak.

In order to capture the complete crossing process of two capsules, we have set the
preinflation ratio to α = 5% in all the results presented hereinafter. For neo-Hookean
membranes, this value corresponds to a prestress T 0 ≈ 0.254 Gs and a maximum
capillary number εH ≈ 0.805.

4.2. Detailed analysis of the crossing process

The hydrodynamic interaction of the two capsules is now studied in detail for two
values of capillary number ε = 0.075 and ε =0.45 corresponding to low and fairly
high shear rates. The inflation ratio is set to 5% and the initial cross-flow separation
�x0

2/2a to 0.25. The deformed shape of a single capsule is symmetrical with respect
to its centre. Thus, the appearance of profile asymmetry coincides with the onset
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Figure 5. Sequence showing, from top to bottom, the motion of the capsules for �x0
2/2a = 0.25

and α = 0.05; (a–e) ε = 0.075, �x0
1/2a = − 4; (A–E) ε = 0.45, �x0

1/2a = − 5. The grey mapping
corresponds to the normal load � f · n.

of hydrodynamic interactions between two capsules. The corresponding sequences of
capsule shapes are shown in figure 5. When �x1/2a ≈ − 1.5, the capsules start to
interact and their shapes are no longer exactly symmetrical with respect to their centres
of mass (figure 5a, A). As separation decreases (−1.5 � �x1/2a � 0), the centres of
mass are shifted across streamlines and parts of the membranes flatten (figure 5b, c)
or become concave (figure 5B, C). After crossing (�x1 > 0), the capsules are convected
away from each other and the membranes recover a convex shape (figure 5d, D). For
large separations �x1/2a > 3.5, the hydrodynamic interaction between the particles
is no longer visible and both capsules have relaxed to the steady deformed shape
obtained for a single capsule subjected to the same flow conditions (figure 5e, E).

In order to understand better the hydrodynamics of crossing, it is useful to compute
the pressure p0 at the flow centre (x = 0), given by

p0 − p∞ = − 1

4π

∮
S1

� f ( y) · y

‖ y‖3
dS( y), (4.1)

where p∞ denotes the far field pressure. In figure 6, we have plotted the pressure
difference p0 − p∞ as a function of capsule separation �x1 for the two values of
capillary number. High positive pressures occur during crossing (−1 � �x1/2a � 0.5,
approximately) when the two capsules are separated by a thin lubrication film, as
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Figure 6. Pressure p0 as a function of centre position x1(G1) =�x1/2a. The same flow
conditions as in figure 5. Symbols � correspond to the sequences in figure 5. During separation,
the pressure is continuous (inset) and its sharp variation is due to the combined effects of film
thickness increase and membrane elastic recoil. - - -, ε = 0.045; —, 0.075.

Figure 7. Magnified cross-views of figures 5(b) and 5(B) (left and right). The two capsules
(C1 above, C2 below) are artificially cut in half to give a clear view of the membrane in the
film region.

shown in figure 5(b, B), and in more detail in figure 7. The increase in film pressure
corresponds to the squeezing of the lubrication film. The high external pressure in
the film leads to large deformations where the membranes flatten or even become
concave (figure 7), depending on the value of the capillary number. Furthermore, large
curvatures appear at the edge of the film. When the capsules separate (�x1/2a ≈ 1),
the combined effects of film thickness increase and membrane elastic recoil lead
to a fast decrease in pressure that becomes negative (figure 6c, d, C, D) and then
stablilizes to zero after the capsules have separated (figure 6e, E). This leads to
transient asymmetric capsule shapes with high curvature tips in the separation region
as apparent in figure 5(d, D). A similar phenomenon was observed experimentally for
drops (Guido & Simeone 1998, figure 5). Furthermore, the suction in the lubrication
film creates a drag force on the capsules with a non-zero x2-component (negative for
C1, positive for C2), which reduces the cross-flow separation �x2 during the parting
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Figure 8. (a) Area dilation as a function of centre position �x1/2a; dotted lines show the
steady value for a single capsule; (b) trajectory of centre G1; α = 0.05, �x0

1 = − 8a, �x0
2 = 0.5a.

phase. A similar phenomenon was observed experimentally for drops (Guido &
Simeone 1998, figure 5).

The high membrane deformation is obviously coupled to an important local increase
of the elastic stress level that may cause material damage, as investigated in the next
section.

4.3. Effect of capillary number

We now study the global effect of capillary number when the inflation ratio is set
to 5% keeping the same initial position of the undeformed capsule centres of mass
(−8a, 0.5a). The relative area increase and centre of mass trajectory are shown in
figure 8 for set values of ε. The same phenomena as described in § 4.1 are recovered
here. Since each capsule represents a greater obstacle for the other when ε decreases,
the maximum deviation increases as ε drops from 0.6 to 0.075 (figure 8b). For all
capillary numbers, we note a significant increase of area dilation during cross over
when �x1 ≈ 0 (figure 8a). The viscoelastic relaxation to the single-capsule equilibrium
shape occurs only for moderate values of ε. For ε � 0.6, it was not possible to capture
the complete separation phase owing to the occurrence of buckling effects in the
membrane. This point will be discussed in detail in the next section.

The increase in deformation leads to an increase in elastic tensions in the membrane,
which can be measured by the value of the maximum principal elastic tension Tmax

for a given deformed state of the capsule. Figure 9 shows, for different capillary
numbers, the evolution of Tmax as a function of centre separation �x1. The value of
the maximum tension T (sc)

max for a single capsule is also shown. We note a first peak
of tension during crossing where the extra tension Tmax − T (sc)

max ranges from 24%
to 12% of T (sc)

max when ε varies from 0.075 to 0.45. The relative decrease of extra
tension when ε increases should not be surprising. Indeed for fixed flow conditions,
increasing ε means increasing the membrane ability to deform. Here, a significant
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Figure 9. Maximum principal tension in the membranes as a function of �x1 for different

capillary numbers and for �x0
1/2a = − 4, �x0

2/2a = 0.25. Dotted lines show the value of T
(sc)
max

for a single capsule; symbols � correspond to the four profiles shown in figure 10.

(a)

(b)

(c)

(d)

Figure 10. Deformed profiles of the capsules at times when the maximum tension in the
membranes reaches high values. The grey level shows the locations where one of the principal

tensions exceeds T
(sc)
max; (a, b) ε = 0.075; (c, d) ε = 0.45.

increase in deformation (figure 8a) leads to a moderate increase in tension, because
the membrane obeys a neo-Hookean constitutive law which is strain softening under
large deformation (Barthès-Biesel et al. 2002). Had we assumed a strain hardening
law such as that of Skalak et al. (1973), we would expect to find significantly higher
stresses in the membranes for the same deformation level and a possible increase of
the extra tension with ε.

The maximum tension also varies during the separation process and Tmax

fluctuations can be as large as the initial peak. It is interesting to locate the areas
where the largest elastic stresses occur. We thus show the distribution of maximum
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Figure 11. Principal elastic tensions T1 and T2 along the x3 = 0 profile at large capillary
number (ε = 0.6, α = 0.05). Arrows show qualitatively the direction of T1; (a) �x1/2a ≈ 0.54;
(b) �x1/2a ≈ 1.27.

principal tensions on the capsule profiles at the first and second overshoots in figure 9,
for ε = 0.075 and ε = 0.45. The grey-level mapping represents the value of the ratio
Tmax/T (sc)

max with a cutoff value at unity. For an isolated capsule, the maximum tension
occurs in the equatorial region of the deformed shape. During crossing, the maximum
tension location is roughly the same as when the capsule is alone. This means that the
extra-tension in the membranes of interacting capsules is due to the extra-elongation
during the crossing. During separation however, two different processes appear,
depending on the value of ε. For relatively large capillary numbers (ε � 0.3, typically),
the second tension overshoot is weak compared to the first and is located in the same
area as for a single capsule, indicating that it is simply due to shape oscillation. For
small capillary numbers, e.g. ε = 0.075, a stress concentration located at the tips of
the capsules appears when the depression caused by separation is maximum. This
is due to the thinning of the separating film as the capsule deformability decreases,
leading to a stronger interaction between the particles.

In conclusion, hydrodynamic interactions increase the stress level in the membrane
and may lead to burst, even when viscous stresses are not high enough to break a
single isolated capsule.

4.4. Buckling instabilities due to hydrodynamic interactions

We now investigate the problem of membrane buckling that occurs during crossing
for large capillary numbers or low inflation rates. As an example, we consider the case
α = 0.05, ε = 0.6, and �x0

2/2a =0.25. In figure 11, we show the two principal tensions
T1 and T2 in the membrane along the profile located in the shear plane (x1, x2), as a
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Figure 12. Wrinkling of the membranes in the flattened film region owing to flexion
instabilities; ε = 0.6, α = 0.05, when �x1/2a ≈ 1.27 (same as figure 11b).
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Figure 13. Stability diagram for �x0
2/2a = 0.25; (a) stable zone, where no compression occurs

during motion; (b) small compression occurs, but the instability does not develop and the
capsules overlap; (c) compression instability develops and the method diverges (e.g. figure 12);
(d, e) zones where a single capsule in simple shear flow is unstable. �, the last case when the
capsules could cross; �, the first failed case.

function of curvilinear coordinate θ1 which varies between 0 and 2π along that line.
Principal tension T1 is tangent to this profile while T2 is orthogonal to the shear plane.

For �x1/2a ≈ 0.54 (figure 11a), the capsules have begun crossing over and the mem-
branes are stretched everywhere (although the figure shows tensions only in the shear
plane) because the capillary number and the membrane prestress are large enough.
As the capsules are convected away from each other (�x1/2a ≈ 1.27), the lubrication
film pressure decreases (see figure 6) and the membranes tend to evolve from concave
to convex shapes. During this process, compression takes place in the θ1-direction
(figure 11b). Consequently, membrane folds tend to develop in the direction orthogonal
to the shear plane (figure 12). For the same capillary number, the phenomenon
disappears when α is increased to 0.1, for example, because the stress level in the
membranes is globally increased. However, for α =0.1, the same instability is found
again for higher values of ε.

Figure 13 shows a stability diagram in the (α, ε)-plane for initial separation
�x0

2/2a = 0.25. There are two instability regions denoted (d) and (e). Zone (d) is
bounded by the curve ε = εH (α) above which there are no equilibrium capsule shapes
as described by Lac & Barthès-Biesel (2005). In zone (e), the equilibrium shapes
are unstable and membrane folds tend to appear around the capsule equator, as
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Figure 14. Trajectory of capsule 1 for different initial positions (�x0
1 ,�x0

2 ) and for ε = 0.3,

α = 0.05; ×, initial position of G1. A small value of |�x0
1 |/2a may influence the trajectory for

high values of �x0
2/2a, because the capsules are convected too fast to reach steady deformation

before they start interacting (dashed trajectories).

observed experimentally by Walter et al. (2001) and predicted numerically by Lac &
Barthès-Biesel (2005).

Elsewhere (zones a, b, c), a single capsule is stable, but instabilities may arise from
hydrodynamic pairwise interactions. Zone (a) corresponds to a stable region for two
interacting capsules, where all principal tensions are greater than or equal to zero
during motion. In zone (b), some negative tensions appear as the capsules cross,
but they are too small and occur on too short a time scale to let the instability
develop, so that it is possible to follow the complete crossing of the capsules. Zone
(c), however, corresponds to larger compressions which lead to buckling instability
during the separation phase (see for example figure 12). As the border between zones
(b) and (c) is not precise, it was drawn with a dotted line in figure 13. When both ε

and α are small – small triangular zone below (e) –, the compression instability sets
in during the collision process, i.e. before the capsules have crossed.

As �x0
2 increases, stability zone (a) expands to higher values of ε for a given α and

zones (b) and (c) shrink accordingly. In the limit �x0
2/2a → ∞, the capsules do not

interact and the upper limit of region (a) is the curve εH (α).

4.5. Effect of the initial position, trajectory shift

As shown in figures 4(b) and 8(b), the capsules deviate irreversibly from their original
trajectory after they have crossed. This trajectory shift is due to deformability and
viscous flow inside and outside the capsule, since no such final crossflow displace-
ment occurs with rigid spheres (Batchelor & Green 1972; Van de Ven & Mason
1976). For liquid drops, a similar trajectory shift has also been found numerically by
Loewenberg & Hinch (1997) and observed experimentally by Guido & Simeone (1998).

We characterize the trajectory of the capsules with three parameters: the initial,
maximum and final centre separations, respectively denoted �x0

2 , �xm
2 and �x∞

2 . The
effect of the initial positions of the centres on the capsule trajectories is shown in
figure 14 for ε = 0.3. The value of �x0

2/2a determines the relative convection velocity
of the two capsules. For �x0

2/2a = 0, there is a priori no relative centre velocity
imposed by the undisturbed flow and thus when the capsules are very far apart
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Figure 15. Comparison of trajectories for large and small capillary numbers and different
initial positions.

(|�x0
1 |/2a � 1), they should not have any relative motion. However, the tank-treading

rotation of the capsule membrane around the steady deformed profile creates a three-
dimensional disturbance flow that vanishes as a/r , where r is the distance measured
from one capsule centre. Consequently, for capsules as far apart as �x0

1/2a ≈ −4
(in the cases considered here), this weak disturbance flow tends to move the capsule
centres off the x1-axis and eventually leads to crossing, as is apparent in figure 14
for ε =0.3. For �x0

1/2a < −3, we did not follow the complete crossing because the
relative motion of the capsules is extremely slow. For example, for �x0

1/2a = −4, it
takes a dimensionless time γ̇ t = 100 to reach �x1/2a ≈ −2. Nevertheless, it seems that
all the computed trajectories converge to the same path.

For �x0
2 > 0, a study of the influence of position �x0

1 along the flow axis indicates
that the trajectories are independent of �x0

1 if the capsules have reached a steady
deformed state before they start interacting. In figure 14 we show that values of
|�x0

1 |/2a > 2 have hardly any incidence on the capsule trajectory shift, provided
�x0

2/2a is not too large. When �x0
2/2a is large, the capsules are convected towards

each other with a large velocity (∼γ̇ �x0
2 ) and thus |�x0

1 |/2a has to be large enough
for the capsules to have time to reach a steady deformation before crossing. The
dashed trajectories in figure 14 correspond to situations where |�x0

1 |/2a is not large
enough for the chosen value of �x0

2/2a and where the capsules are not completely
deformed when they start interacting. Except for the above short study, all the results
presented in this paper were obtained with values of |�x0

1 |/2a large enough for this
parameter to have no effect whatsoever.

Finally, we note on figure 14 that the maximum �xm
2 − �x0

2 and final �x∞
2 − �x0

2

deviations decrease as separation increases. For �x0
2/2a > 1.25, there is essentially no

trajectory shift.
The centre trajectories also depend on ε, i.e. on capsule deformability, as shown in

figure 15 for ε = 0.0375 and 0.45. For given flow conditions, the smaller value of ε

corresponds to the less deformable capsule. As expected, we find that the maximum
deviation �xm

2 − �x0
2 increases as ε and �x0

2 decrease. This means that the less
deformable particles have to deviate more as they cross. Furthermore, since membrane
prestress decreases capsule deformability, we also find that �xm

2 − �x0
2 increases with

inflation ratio α (figure 4). For large initial offsets, the maximum deviation �xm
2 −�x0

2

becomes less sensitive to capillary number. However, as ε increases, it occurs for larger
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Figure 16. Final deviation of capsule C1 as a function of ε, for α = 5% and different initial
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Figure 17. Evolution of the viscous film between the capsules as ε increases (�x0
2/2a = 0.25

and, from left to right, ε = 0.015; 0.075; 0.15; 0.45).

values of �x1, because the capsules are more deformable and elongate over a longer
time as they cross. This phenomenon can be seen clearly in figure 15 for �x0

2/

2a = 1.
The overall effect of capsule deformability and initial separation is summarized in

figure 16 where we show the net cross-flow displacement δ2 = (�x∞
2 − �x0

2 )/2 of each
capsule as a function of ε, for different initial offsets �x0

2 . We first note that the
final displacement depends only weakly on capsule deformability as measured by ε.
Obviously as �x0

2/2a increases, the interaction between the two capsules weakens and
δ2 decreases. Asymptotically, for �x0

2/a � 1, the hydrodynamic interaction between
the capsules becomes negligible and δ2 tends to 0.

During strong encounters (�x0
2/2a � 0.25), a viscous film appears between the

capsules as they pass each other and then capsule deformability plays a role. Indeed,
the importance of viscous lubrication forces increases with the thinness and the width
of this film. When ε increases, the particles elongate and the film widens. However,
the positive pressure in the film eventually causes dimpling that results in thickening
of the film (figure 17). Thus, two opposite effects (thickening and widening of the
film) compete, and we find there exists a capillary number for which the cross-flow
displacement δ2 is maximum.

This result is qualitatively similar to that obtained by Loewenberg & Hinch (1997)
for a pair of droplets. It is not possible to plot the results obtained by these authors
in figure 16, because the capillary number calculated for droplets is based on surface
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tension and cannot be compared with our elastic capillary number, based on a shear
elastic modulus. Nevertheless, we can compare the crossflow displacements observed
over a range of capillary numbers for a given initial offset. For closely spaced
trajectories (�x0

2/2a � 0.5), the final deviation of a droplet is about 30% higher than
that of a capsule whereas it is almost the same for higher offsets (�x0

2/2a � 0.75).
(δ2/a ≈ 0.44, 0.46, 0.42, 0.39 for surface-tension-based capillary numbers equal to
0, 0.1, 0.3, 0.4, respectively λ=1 and �x0

2/2a = 0.25 (Loewenberg & Hinch 1997, figure
5), to be compared to the deviations reported in figure 16.) This indicates that the
elastic membrane plays an important role in the near-contact behaviour of capsules.

Furthermore, we also note that the evolution of the stable zone as �x0
2 varies – zone

(a) in figure 16 – confirms that for low initial offsets, the capsule stability strongly
depends on capillary number.

5. Conclusion
The numerical technique based on Lagrangian tracking of a deformable elastic

interface coupled to numerical interpolation of the deformed surface by means of bi-
cubic B-spline functions is quite powerful. It allows us to model a dynamic interaction
problem between two highly deformable particles over long times with very good
precision. Fine mechanical phenomena such as a tendency towards buckling can also
be detected. With this technique, we have been able to investigate the hydrodynamic
interactions of two identical capsules freely suspended in simple shear flow. The
deformability is controlled by both the capillary number ε and the membrane prestress
level, measured by an inflation ratio α. Overall, the interaction remains weak as long
as the distance between the two centres of mass is larger than a few initial capsule
diameters. Owing to the particle deformability and the inner and outer viscous flows,
the collision is irreversible and the capsule trajectories are shifted in the crossflow
direction after they have passed each other.

The comparison with results obtained for interacting liquid drops by Loewenberg
& Hinch (1997) and by Guido & Simeone (1998) allows us to estimate the effect of the
elastic membrane on the capsule motion. The relative motion of a pair of capsules is
only qualitatively similar to that of droplets because the liquid–liquid interface differs
from a solid elastic membrane, particularly for the transmission of shear stress. We
find that the net crossflow displacement is smaller for capsules than for droplets. This
effect, particularly visible for closely spaced trajectories, is probably due to the fast
and strong elastic relaxation of the capsule membrane.

For liquid droplets, Loewenberg & Hinch (1997) showed that the trajectory shift
mainly depends on the viscosity ratio λ, rather than on the capillary number. Our
results also show a weak dependence on ε and α. We did not investigate the effect
of λ in the present study, but it would be interesting to do so since this parameter is
expected to affect significantly the relaxation process and thus the final trajectory shift.

Another situation that should also be studied corresponds to the case where the two
centres of mass G1 and G2 are not initially located in the same shear plane (�x0

3 	= 0).
The deviation in the vorticity direction may be expected to be smaller than along the
velocity gradient (Loewenberg & Hinch 1997). However, to compute the self-diffusion
coefficient of a dilute suspension of capsules, it is necessary to complete the present
results with the analysis of three-dimensional trajectories.

Another aspect of this work concerns the evolution of the stress level in the
membranes during the motion. This is an important point, since a capsule may
unexpectedly burst when its membrane is subjected to large hydrodynamic loads. It
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turns out that the interaction between the capsules causes extra tensions which might
damage the membranes. In most cases, the peak of tension in the membranes appears
as the capsules overlap. However, for closely spaced trajectories and small capillary
numbers, high tensions appear in the near-contact regions during the separation
phase. Furthermore, the interaction generates negative tensions in the membrane
(and thus possible buckling instabilities) in two different processes. For very small
capillary number and preinflation ratio, the instability develops during the collision,
as the capsules start overlapping. For higher prestress levels (α � 2.5% here, although
this value depends on the membrane law), it appears above a maximum capillary
number, as the two capsules separate and the membranes quickly evolve from a
concave to a convex shape. This indicates that it would be interesting to include
bending resistance in the membrane mechanical model to see how the post-buckling
behaviour influences the particle interaction.
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